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T h e r e  has been a great deal of interest in estimation of 
terrestrial biophysical parameters such as vegetation with 
remotely sensed data. Quantitative estimation of vegeta- 
tion properties with existing algorithms has been based 
on empirical relationships established by simple regres- 
sion. The problem in applying these empirical relation- 
ships is that those coefficients proposed vary with vegeta- 
tion type. To investigate the possible development of an 
algorithm to quantitatively estimate vegetation properties 
independent of vegetation type, a model-to-model ap- 
proach is proposed. This approach first inverts a simple 
bidirectional reflectance distribution function (BRDF) 
model with limited data points and simulates multidirec- 
tional data. The simulated data are then used in the 
inversion of a physically based BRDF model to estimate 
vegetation optical properties (leaf reflectance and trans- 
mittance) and leaf area index (LAI). This approach is 
validated with data collected from three experiments 
conducted in cotton, alfalfa, wheat, and pecan fields. A 
sensitivity analysis and demonstration with multitempo- 
ral remote sensing data were performed, and the results 
show that estimated LAI values agree well with field 
observations and there is a potential in applying this 
approach on an operational basis in practice with multi- 
temporal remote sensing data. 

INTRODUCTION 

Biophysical parameters have been identified as the most 
important physical properties of terrestrial surfaces due 
to their specific roles in geosphere-biosphere-atmo- 
sphere interactions, and vegetation is one of the most 
important biophysical parameters because of its unique 
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role in global climate change studies. This parameter reg- 
ulates the energy exchanges (including water) between 
the earth-atmosphere interface, and dominates the 
functioning of hydrological processes through modifica- 
tion of interception, infiltration, surface runoff, and its 
effects on surface albedo, roughness, evapotranspiration, 
and root system modification of soil properties. The 
vegetation amount controls the partitioning of incoming 
solar energy into sensible and latent heat fluxes, and 
consequently changes in vegetation amount will result 
in long-term changes in the local and global climates, 
which in turn will affect the vegetation growth as a feed- 
back. In marginal ecosystems, this may result in persistent 
drought and desertification, with drastic impacts on the 
human populations of these regions through reduction 
in agricultural productivity, reduction in quantity and 
quality of water supply, and removal of land from human 
habitability. 

Vegetation in arid regions is in itself a sensitive 
indicator of land degradation. Over the past several 
decades, substantial semiarid lands have become de- 
graded to the point where their original biotic functions 
have been damaged, with subsequent reclamation being 
costly or in some cases impossible. The processes lead- 
ing to degradation and the extent of the problem world- 
wide are only recently being understood. The continu- 
ally increasing global population intensifies pressure 
on marginal lands, particularly in developing countries 
where population growth and poverty subvert efforts to 
introduce sustainable agricultural practices, leading to 
environmental problems such as soil erosion and defor- 
estation. Assessment of the degree to which desertifica- 
tion is increasing is essential to decision-makers and 
others concerned with land degradation. Therefore, con- 
tinuous monitoring of vegetation is absolutely indispens- 
able and would certainly add much to our knowledge 
in understanding our living environment and its interac- 
tions with climate, and in predicting the future of our 
planet. 
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Remote sensing techniques provide a powerful tool 
for obtaining such information. Radiometric measure- 
ments in the solar spectral domain contain useful infor- 
mation about vegetation. Analysis of remotely sensed 
data has revealed the possibility of using remote sensing 
techniques to characterize vegetation properties, and 
to estimate crop yields and total biomass productions. 
Consequently, there has been a great deal of interest 
in the estimation of vegetation properties via remote 
sensing means, among which leaf area index (LAI) is 
the key parameter. Several approaches have been made 
in relating remotely sensed data to LAI in the past 
decade (Asrar et al., 1985; Best and Harlan, 1985; 
Clevers, 1988; 1989; Current, 1983; Current et al., 
1992; Hatfield et al., 1985; Holben et al., 1980; Price, 
1993). These approaches can generally be classified into 
three categories: simple regression, vegetation index, 
and modeling approaches. 

Simple Regression Approach 
The simple regression approach is based on the fact 
that the reflectance in the red spectral region decreases 
while that in the near-infrared (NIR) region increases 
when the vegetation density (LAI) increases. By simple 
multiband regression to ground LAI measurements, a 
relationship between LAI and surface reflectance can 
be established, which can be used in LAI estimation 
with remote sensing data. There are several limitations 
in using this approach to estimate LAI values. The first 
limitation is that statistically a large number of LAI 
measurements are needed at the same site and same 
time as the spectral reflectances are collected (or a 
subset of a large data set) in order to establish a reliable 
relationship between LAI and spectral measurements. 
The second limitation is that the established reflectance- 
LAI relationship is vegetation type dependent, indicat- 
ing that LAI sampling must be made at each vegetation 
type site in order that the relationship can be used for 
varying biomes. The third limitation is that this approach 
is very vulnerable to measurement noise such as soil 
substrate effect, atmospheric effect, and especially bidi- 
rectional properties of the vegetation. The soil substrate 
and atmospheric effects can be reduced by correcting 
for these factors (Huete et al., 1989; Kaufman, 1989), 
but the bidirectional effect remains difficult to resolve. 
Consequently, it is necessary to normalize the bidirec- 
tional effect in order to establish a viable reflectance- 
LAI relationship. This is not an easy task, however, 
because most natural land surfaces are non-Lambertian 
and the bidirectional reflectances made at off-nadir view 
angle can be substantially different from those made at 
nadir view angles (Kimes et al., 1985; Shibayama and 
Wiegand, 1985; Deering, 1989; Jackson et al., 1990; Qi 
et al., 1993). Furthermore, the bidirectional effect is 
vegetation-dependent, and even bare soil surfaces dem- 
onstrate significant bidirectional reflectance properties 

(Jackson et al., 1990). Variation in bidirectional reflec- 
tance measurements can be up to 50% due to view and 
sun angle differences between satellite and equivalent 
ground or aircraft measurements (Goward et al., 1991; 
Pinter et al., 1990). This approach works better with 
large data sets of constant view angles for a single 
vegetation type. For multidirectional remote sensing 
data of various types of biome, this simple regression 
approach needs further investigation with regard to the 
bidirectional effect as well as the regression coefficients 
of different types of biome. 

Vegetation Index Approach 
More than a dozen vegetation indices (VIs) have been 
developed by linearly combining or ratioing reflectances 
in the red and in the NIR spectral regions. The most 
commonly used VI is the normalized difference vegeta- 
tion index (NDVI): 

NDVI - PN,R - PREP (1) 

where p is reflectance in red or NIR spectral region. 
Most VIs are qualitatively related to the vegetation amount 
(LAI, % cover, for example) and have been used as an 
indicator of vegetation growth (Tucker, 1979; Choud- 
hury, 1987; Clevers, 1989; Malingreau et al., 1989; 
Jackson and Huete, 1991; Baret and Guyot, 1991; Gut- 
man, 1991; Cihlar et al., 1991; Wiegand et al., 1991; 
Danson et al., 1994). Some empirical or semiempirical 
quantitative relationships between VI and LAI have 
been developed (Asrar et al., 1985; Spanner et al., 
1990; Price, 1993; Nemani et al., 1993). To establish a 
relationship between VI and LAI, vegetation index val- 
ues are first calibrated to the ground LAI values to 
develop a fitting curve, and the fitting curve is used in 
estimating LAI values with remote sensing data. The 
advantage of this approach is its simplicity. The disad- 
vantage of this approach is, however, the diversity of 
the established VI and LAI relationship. Some studies 
suggest a linear relationship between NDVI and LAI 
(NDVI = a + fl LAI), while others suggest an exponential 
relationship (NDVI = ae ~ ~i), whereas still others sug- 
gest a power relationship (LAI = a + fl LAP), where a, 
fl, and x are empirical coefficients. Even within the 
linear relationship category, the proposed coefficients 
vary substantially from one vegetation type to another. 
No quantitative relationship has been generalized, be- 
cause each study was done with a limited remote sensing 
data set and limited vegetation types. Another disadvan- 
tage is that this approach relies on the quality of vegeta- 
tion indices. It assumes that a vegetation index normal- 
izes most of the external noise (background substrate, 
atmosphere, and sun and view angle effects), which is 
unfortunately not always true. MI vegetation indices devel- 
oped so far (Baret and Guyot, 1991; Qi et al., 1994a; 
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Teillet et al., 1994) are subject to various effects as 
found in the reflectance measurements, especially bidi- 
rectional effects (Holben and Kimes, 1986; Deering, 
1989; Deering et al., 1990; Jackson et al., 1990; Pinter 
et al., 1990; Qi et al., 1994b). When transformed from 
reflectance domain into vegetation index domain, the 
bidirectional effects could be reduced (Jackson et al., 
1990; Huete et al., 1992), but could also be increased 
(Kimes et al., 1985; Epiphanio et al., 1994; Qi et al., 
1994b), depending on vegetation types and solar zenith 
angles. 

To demonstrate if the most commonly used NDVI 
will increase or decrease the bidirectional effect, an 
example is illustrated in Figure 1 using bidirectional 
spectral reflectance (p~) measurements made over a 
semiarid grassland at the USDA-ARS Walnut Gulch 
Experimental Watershed southeast of Tucson, Arizona 
on 4 August 1991 (Qi et al., 1994b). Data in Figure la  
are the normalized reflectance in NIR Region (p~,,/ 
p ..... ), whereas data in Figure lb  are normalized NDVI 
(NDVI/NDVIo). In the backscattering direction (nega- 
tive view angles), the normalized NIR was larger than 
that in the forward direction (positive view angles). In 
contrast, the bidirectional effect on the normalized NDVI 
was much stronger in the forward direction (Fig. lb). 

In Figure lc, another ratio (NDVI / NDVI0) / (p~,, / 
P .... ), was plotted as a function of the view angle. The 
significance of this ratio is to examine whether the 
NDVI would increase or decrease the bidirectional 
effects found in the NIR. If this ratio is greater than 1, 
it indicates that NDVI enhanced bidirectional effects 
found in the NIR. The bidirectional effect was indeed 
enhanced (ratio > 1.0) by the NDVI in the forward direc- 
tion, but was reduced in the backscattering direction 
(ratio< 1.0). This indicates that use of NDVI in the 
forward direction will magnify the bidirectional effect 
and, therefore, it is better to use NIR rather than NDVI 
when bidirectional effect is the major concern. At two 
extreme view angles ( + 40°), NDVI can reduce the view 
angle effect by 38% in the backscattering direction, but 
can increase the effect by 18% in the forward direction. 
Furthermore, the degree of reduction or enhancement 
of the bidirectional effect was a function of solar zenith 
angle, the effect being increased with larger solar zenith 
angles. Consequently, the bidirectional effect on vegeta- 
tion indices must be quantified before a quantitative 
VI-LAI relationship can be used. 
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Figure 1. Bidirectional properties of the normalized (NIR/ 
NIR0) reflectances (a), corresponding normalized NDVI (b), 
and the ratio between the NDVI/NDVI0 and NIR/NIR0 
(c). When the ratio is greater than 1, the NDVI increases 
the bidirectional effect found in NIR, and when the ratio is 
less than 1, the NDVI decreases the effect. 

Model ing Approach 
This approach includes radiative transfer and empirical 
models. Empirical models are simple but the parameters, 
when inverted, infer little information about vegetation. 
The radiative transfer model approach characterizes light 
interactions with vegetation canopies and predicts the 
bidirectional reflectance distribution function (BRDF) 

as a function of the observation geometry (Suits, 1972; 
Verhoef, 1984; Deering et al., 1990; Choudhury, 1987; 
Verstraete et al., 1990; Pinty et al., 1992; Strahler, 1994). 
Although most models were developed for the purpose 
of normalizing the bidirectional effects, some models 
can be potentially inverted to infer vegetation physical 
properties. Among them, Verhoef (1984) developed the 
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SAIL (scattering by arbitrarily inclined leaves) model, 
as a function of solar position and sensor's viewing 
geometry. This model assumes that the vegetation or 
plant canopy is uniformly distributed in a single layer 
and the leaves are randomly oriented. The model re- 
quires such parameters as reflectances of the under- 
neath soils, LAI, leaf reflectance, and leaf transmittance. 
Inversion of this model with remote sensing data, there- 
fore, can be used to estimate LAI and it has been proved 
to be feasible (Goel and Deering, 1985). 

In another more complicated, physically based 
model by Verstraete et al. (1990) and Pinty et al. (1990), 
vegetation is characterized with such parameters as 
average single scattering albedo, asymmetry factors, leaf 
orientation, and interception cross section of the canopy. 
Although these parameters are not as intuitive as LAI, 
they indicate some physical properties of the vegetation 
such as leaf orientation, distribution, and optical proper- 
ties (Pinty et al., 1990). The parameters inverted from 
this model, however, are difficult to relate directly to 
any vegetation properties because these parameters are 
usually difficult or even impossible to measure in the 
field. Rahman et al. (1993a,b) further modified this 
model with parameters that characterize the bidirec- 
tional properties and reduced the number of input pa- 
rameters to three (mean level of reflectance and two 
anisotropy factors). Due to simplifications, direct links 
between the inverted parameters and vegetation physi- 
cal properties are difficult. 

So far, more than a dozen BRDF models have been 
developed for various types of surfaces such as crop 
land, grassland, and bare soil surfaces (see Strahler, 
1994), and most are being used for the purpose of 
normalizing bidirectional effect. When used in estima- 
tion of vegetation properties, some are mathematically 
invertable and some are not. Even for those invertable 
models, there are several limitations. The first limitation 
is the lack of knowledge about those required input 
parameters, because inverted parameters have no direct 
link to physical properties of vegetation and, therefore, 
cannot be measured directly from field experiments. The 
second limitation is the requirement of multiple simulta- 
neous multidirectional measurements. If a model re- 
quires a set of N input parameters, actual measurements 
needed for inversion must be at least N+ 1 if statistically 
meaningful results are expected. In practice, multiple 
simultaneous multidirectional measurements over the 
same targets are usually not possible due to remote 
sensors' capabilities and economic considerations. 

All of the three LAI estimation approaches, simple 
regression, vegetation index, and modeling, have advan- 
tages as well as disadvantages. The first two approaches 
are simple and easy to compute, but require substantial 
ground LAI sampling virtually for every biome type. In 
addition, they are also very sensitive to bidirectional 
effects. Although some work on normalization of sun/ 

S 1 ( Top View ) 

$2 ( Front View ) 

$3 ( Side View ) 

Figure 2. A schematic illustration of an object sensed by 
three sensors of different viewing direction to illustrate the 
bias each sensor may result in when looking at only one sin- 
gle direction. 

view angle effects (Huete et al., 1992; Qi et al., 1995) 
with vegetation indices has been made, the bidirectional 
effects is till the major obstacle to overcome. The third 
approach has three major advantages over the simple 
regression and vegetation index approaches, although it 
may not be as simple as the previous two and maybe 
more time-consuming. The first advantage of this model- 
ing approach is the utilization of information content 
contained in multidirectional remote sensing measure- 
ments. Multidirectional measurements can provide com- 
plementary information that nadir view measurements 
alone cannot (Strahler, 1994). A single nadir-view mea- 
surement obtains information about the surface as if the 
surface had no vertical structures, which is usually not 
the case in practice, while off-nadir view measurements 
reveal different aspects of the vertical structures such 
as vegetation height. An example is illustrated in Figure 
2, where an object (a cut cylinder having a height equal 
to the diameter) is viewed by three sensors (S1, $2, and 
$2). Looking from the top, sensor $1 sees a semicircle, 
viewing at the front, sensor $2 sees a square, and viewing 
from aside, sensor $3 sees a rectangle. As a consequence, 
the reflectances as measured with these three sensors 
would be different. In any case, the object is biased by 
all of the three sensors, since each of them only views 
one aspect of the object, which is usually the case in 
remote sensing. Consequently, to objectively character- 
ize vegetation status, spectral reflectances or derived 
vegetation indices at a single viewing geometry (e.g., 
nadir) may be insufficient. The bidirectional property 
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of natural land surface is a direct consequence of surface 
anisotropy resulting from such factors as the scattering 
process within the canopy layer, leaf angle distribution 
and orientation, thickness and the size of single leaves, 
crowns and their spatial distribution, as well as the 
underlying soil properties such as roughness, color, and 
organic matter content. When multidirectional mea- 
surements are used, more information about the object 
will be obtained and a more realistic description of the 
target will be achieved. It is based on such bidirectional 
properties of natural land surface that most radiative 
transfer models are developed and, therefore, by inver- 
sion of these models, surface physical properties can be 
more objectively inferred. 

The second advantage of the modeling approach is 
the physical basis that links the biophysical properties 
of vegetation to model-inverted parameters such as LAI. 
Radiative transfer models were developed based on light 
interactions with vegetation. The optical properties of 
an individual leaf are characterized by such parameters 
as leaf reflectance, transmittance, absorptance, and single 
scattering albedo, and the physical properties are usually 
characterized with parameters such as LAI, height, and 
cross-section area that intercept light (e.g., Pinty et 
al., 1990). Given those optical and physical properties, 
BRDF models can predict bidirectional reflectances in 
different viewing directions and with different illumina- 
tion conditions. Inversion of these BRDF models, when 
multidirectional measurements are available, will result 
in parameters of optical and physical properties of target 
vegetation, provided that these models are mathemati- 
cally invertable. 

The third advantage of the modeling approach is 
its potential for operational applications with multidirec- 
tional measurements available or to be available. As 
global change is becoming a major environmental issue, 
more and more remote sensors will be launched that 
have the capabilities of acquiring multidirectional data 
at high temporal frequencies. Examples of these types of 
sensors are Advanced Very High Resolution Radiometer 
(AVHRR) on NOAA satellite series, Moderate-Resolution 
Imaging Spectrometer (MODIS) and Multiangle Im- 
aging Spectral Radiometer (MISR) to be launched on 
the Earth Observing System (EOS) platforms, the VEG- 
ETATION sensor to be on board the French SPOT 4 
satellite, and the Advanced Visible and Near-Infrared 
(AVNIR) to be on board the Japanese Advanced Earth 
Observing Satellite (ADEOS). Once atmospheric effects 
are corrected for, data acquired with these sensors will 
be ideal for surface physical property estimation with 
BRDF modeling effort. 

Consequently, the modeling approach is a more 
reliable method in estimating vegetation biophysical 
properties through inversion. There are, however, some 
practical limitations in operational use of this approach. 
The first limitation is that inversion of a BRDF model 

of N parameters requires at least N+ 1 simultaneous 
multidirectional measurements available, which is usu- 
ally not possible from a single sensor in practice. The 
second limitation is that acquiring multiple simultane- 
ous multidirectional measurements is not always possi- 
ble and not economic. For these reasons, those models 
that require fewer input parameters, therefore fewer 
multidirectional measurements to invert, are conse- 
quently preferred. Parameters estimated by inversion 
of these models, however, have little or no direct link 
to vegetation biophysical properties. To estimate param- 
eters that have a direct link to surface biophysical prop- 
erties, inversion of those physically based models is 
therefore preferred, though this requires a substantially 
large number of simultaneous multidirectional measure- 
ments. Consequently, an optimistic approach should be 
investigated to overcome these controversial problems. 
The objective of this article is, therefore, to investigate 
approaches that utilize a limited number of multidirec- 
tional measurements (maybe fewer than required by 
physically based BRDF models) to invert those physi- 
cally based models that require more data than available, 
for estimation of biophysical properties such as LAI. 

APPROACH 

Multidirectional reflectance measurements provide com- 
plementary information about surface characteristics, 
while physically based BRDF models provide a direct 
link between the measurements and physical vegetation 
parameters. Therefore, multidirectional reflectance mea- 
surements can be combined with BRDF models to infer 
vegetation properties. However, physically based BRDF 
models require a large number of simultaneous multi- 
directional measurements than are usually available in 
inversion processes. Empirical or semiempirical models 
require fewer input parameters and are easily inverted, 
but the physical link between the parameters inverted 
from models and vegetation properties is weak. To over- 
come this problem, we propose a model-to-model ap- 
proach that combines physically and empirically based 
BRDF models to predict vegetation parameters with a 
limited number of multidirectional measurements. 

A Model-to-Model Approach 
To use a limited number of remote sensing measure- 
ments in the inversion of physically based BRDF models 
that may require more than the number of measurements 
available, we combine a simple BRDF model requiring 
fewer input parameters (NI) and a physically-based 
model (requiring N2 parameters) from which vegetation 
parameters can be estimated. The simple model will be 
used in inversion and simulation before the physically 
based model is inverted. This approach is referred to 
as the model-to-model approach and is illustrated in 
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Figure 3. A schematic description of the model-to-model ap- 
proach in LAI estimation using multidirectional remote sens- 
ing measurements and bidirectional reflectance distribution 
function (BRDF) models. 

Figure 3. First, with a limited number (N) of multidirec- 
tional spectral reflectance measurements (P0, a simple 
empirical or semiempirical model (M1) that requires 
that N1 parameter (N~ < N) is inverted to obtain a set of 
N~ parameters. These estimated parameters are then 
used in the simple model itself to simulate multidirec- 
tional reflectances of different geometric direction by 
varying the solar zenith, solar azimuth, view zenith, and 
view azimuth angle, resulting in a larger data set (>> N2) 
than required by the physically based model (M2). The 
simulated data are then used in the inversion of a 
physically based model (M2), from which some parame- 
ters characterizing vegetation properties can be esti- 
mated. In this study, we attempted to estimate leaf 
reflectance (p~) and transmittance (r~) from model M2 
which are then used as inputs to a third BRDF model 
(M3) to predict leaf area index (LAI). 

Selected BRDF Models 
In this study, a semiempirical model proposed by Rah- 
man et al. (1993a,b) was selected in the first step (M1): 

cos kq 01 cos ~ 1 02 ~' " [1 + R(G)], (2) 
= p,, (cos o ,  + 

where 

e ( g ) -  
1 - 0 2 

[1 + 0 2 - 20  cos(n - g)]a/2 (3) 

1 - p,, (4) 
R ( c )  = I + (; 

G = ~/tan 2 01 + tan 2 02 - 2tan 01 tan 02 cos(~p2 - ~1), 

(5) 

cos g = cos 01 cos 02 + sin 01 sin 02 cos(~2 - ~Pl), (6) 

where the O's are solar (01) and sensor (02) zenith angles 
and the ~'s are the corresponding azimuth angles. This 
model is simple and requires only three input parame- 
ters (90, k, and 0). The first parameter, P0 (0 ~< P0 ~< 1), 
is an arbitrary parameter that characterizes the intensity 
of surface reflectance. The second parameter, k (0 ~< k ~< 1) 
is an indicator of the vegetation anisotropy. When k = 1, 
the surface anisotropy characteristics is controlled solely 
by the third parameter ® ( - 1 ~< O ~< + 1). The O parame- 
ter controls the relative contributions of the forward scat- 
tering (0 ~< ® ~< + 1) and backscattering ( - 1 4 O ~< 0) 
and, therefore, is an indicator of the vegetation struc- 
tures. These parameters are not directly measurable 
because of the way they were defined (Rahman et al., 
1993a,b), and there is no one-to-one relationship with 
any surface physical parameters. Other existing BRDF 
models can be used for the purpose of this study, but 
a general study by Cabot et al. (1994) on the validity of 
existing BRDF models using ground and airborne re- 
mote sensing data indicated that Rahman's model was as 
good as other more-complex BRDF models in predicting 
reflectances and is simple and easy for inversion. 

The second model (M2) used is from Pinty et al. 
(1990) and Verstraete et al. (1990): 

O9 Kl 
p( Ol,q)l,02,~2) 4 tql~2 + 1¢~1 

(7) 

where 

l + x  
tt, = cos 01, tt2 = cos 02, H(x) - 1 + (1 - p)l/2x' (8)  

1 and VT,(g)=4(1 4 / G/t2 
ev(g) - 1 + 1 + v,,(g------) - ~ / 2 7 A  7~2 (9) 

The P~(g) is a function that counts for the joint transmis- 
sion of the incoming and outgoing radiation as well as 
hot spot effect, to is the average single-scattering albedo 
of the particular particles making up the surface, O is 
asymmetry factor as defined in Rahman's model, X de- 
fines leaf orientation, 2rA defines interception cross 
section of the canopy, and K is a parameter that is a 
function of leaf angle distribution (see Pinty et al., 1990). 
By integrating the average single-scattering albedo (m) 
and asymmetry factor (0), leaf reflectance and transmit- 
tance can be inferred, provided that the leaf angle distri- 
bution is quasiunifonn and the asymmetry parameter is 
close to zero (Pinty, 1995, personal communication). 

The third model (M3) used in this study is the SAIL 
model (Verhoef, 1984), which involves a set of radiative 
transfer equation as proposed by Suits (1972): 
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dEs/dx = kEs (10a) 

dE_ /dx  = - s Es + aE_-aE+,  (10b) 

dE÷/dx  = s'Es + a E  _ -aE +, (10c) 

dEo/dx = wEs + rE_ + uE÷-KEo, (10) 

where Es is direct solar flux, E_ and E+ are diffuse 
downward and upward flux, Eo is total solar irradiance, 
K is the extinction coefficient, and k, s, s', a, and a 
are coefficients defined by Bunnik (1978). In the SAIL 
model, Verhoef (1984) characterized vegetation by a leaf 
inclination distribution function (LIDF), leaf reflectance 
(PzL), transmittance (r~L), and leaf area index (LAI), and a 
soil substrate by its reflectance ps. With these vegetation 
parameters he derived k, s, s', a, and a coefficients 
and predicted bidirectional reflectance as a function of 
angular parameters of the sun and sensors (Verhoef, 
1984; Bunnik, 1978; Suits, 1972). Because this model 
requires an LAI parameter as input, inversion of this 
model allows one to obtain LAI values (Goel and Deer- 
ing, 1985). 

Model Inversion 
Parameters in all three models are wavelength (~,) de- 
pendent,  and we selected spectral wavelengths in the 
blue, green, red and NIR spectral regions in this study, 
which corresponded to the Landsat TM bands and three 
SPOT HRV spectral bands. In the inversion and simula- 
tion processes, all four spectral bands were used, and 
the inversion was performed in such a way that the 
estimated value would result in a least squared fit for 
all spectral bands. 

EXPERIMENT 

Remote Sensing Data Description 
In order to validate the proposed model-to-model ap- 
proach in estimation of LAI, a total of four remote 
sensing data sets were obtained over alfalfa, cotton, 
wheat, and pecan canopies from three field experiments. 
The first experiment, which is referred to as the whea t  

experiment, was conducted at Phoenix, Arizona from 
day of year (DOY) 13 to DOY 146 (13 January-26 May) 
in 1983 in a spring wheat field of north-south row 
direction with spacing of 0.81 m. Spectral reflectances 
were collected on all clear days with a Modular Multi- 
band Radiometer (MMR) which has spectral bands simi- 
lar to the TM sensors. The radiometer was mounted 
onto a yoke and was carried across the previously de- 
signed target (size = 1 m × 3 m), acquiring at a 0.25 m 
interval with a resolution of - 0 . 5  m. The resulting 12 
measurements were then combined to obtain an average 
reflectance of the wheat canopy. 

The second experiment was conducted at The Uni- 
versity of Arizona Maricopa Agricultural Center, near 
Phoenix, Arizona, 1990, and is referred to as the M A C  

VI experiment. Two data sets were collected during this 
experiment with two sensors. The first data set consisted 
of the spectral reflectances acquired with the ASAS 
sensor at 5000 m above ground level on DOYs 250 and 
251 (7 and 8 September, respectively) in 1990 at the 
Maricopa Agricultural Center (MAC) near Phoenix, Ari- 
zona. The ASAS data consisted of spectral reflectances 
in 29 spectral bands from 465 nm to 871 nm, with - 1 5  
nm bandwidth, and the spatial resolution was - 5 m x 2.3 
m. A total of three different types of surfaces was se- 
lected in this study, which included recently harvested 
alfalfa, pecan orchards (60-80% cover), and cotton can- 
opy ( - 8 0 %  cover). The data were first corrected for 
the atmospheric effect using the Herman and Browning 
(1965) algorithm for scattering and the 5S radiative 
transfer model (Tanr6 et al., 1990) for gas absorption 
[see Moran et al. (1995) for a detailed description]. To 
overcome spatial differences within each selected target, 
a window of about 40 x 40 m 2 was extracted from each 
of the ASAS images for the LAI estimation. The high 
spectral reflectances were integrated into the same spec- 
tral bandwidth as the TM Band 1 and three SPOT HRV 
spectral bands for easy model inversion. The integrated 
spectral reflectances were compared with the ground 
reflectance measurements by Moran et al. (1995), and 
a good correlation (R2= 0.98) was found between the 
ASAS and ground measurements, suggesting that the 
atmospheric effect was properly removed. 

The second data set collected during the M A C  VI 

experiment consisted of coincident aircraft measure- 
ments of seven view angles over the same targets as the 
ASAS data but acquired with an Exotech radiometer. 
The radiometer had one filter similar to the first spectral 
band of the TM and three filters similar to the SPOT 
HRV spectral bands. The aircraft was flown at 150 m 
above ground level, resulting in a nominal spatial resolu- 
tion of 40 m. The atmospheric effect on the aircraft 
data was assumed negligible because of its low altitude 
(150 m) and, therefore, the data were calibrated to 
surface reflectances with ground reference panel mea- 
surements. Comparison of the aircraft data with ground 
measurements, as well as with the ASAS data indicated 
that the assumption was valid [see Fig. 3 and 4 in Moran 
et al. (1995)]. 

The third experiment, referred to as mini-alfalfa 

experiment, was conducted at the University of Arizona 
Campus Agricultural Center in Tucson, Arizona from 
DOY 251 to DOY 284 (9 S ep t em b e r - l l  October) in 
1994 in a small growing alfalfa field ( - 1 0  m x 10 m). 
Bidirectional reflectance factor (BRF) measurements 
were made with an Exotech radiometer (similar to the 
one used on aircraft measurements during the M A C  VI 

experiment) mounted on a portable BRF apparatus, 
which can be adjusted according to canopy height. 
Attached to the apparatus was also a clinometer that 
recorded exact view angles of the sensor. The Exoteeh 



78 Qi et al. 

sensor was aligned in the SPOT HRV scanning direction, 
and the view angle varied from - 55 ° in the backscatter- 
ing to + 55 ° in the forward scattering directions. Daily 
BRF measurements  were  made at different times (from 
9:00 a.m. to 12:00 p.m. local time) on all clear days at 
three different solar zenith angles (ranging from 28 ° to 
56 ° ) in the morning. This data set was used in simulation 
of the AVHRR sensor overpass geometry later in this 
study. 

Ground LAI Measurements 

During the wheat experiment,  a total of 12 plants were 
destructively sampled at random in the field, and the 
green leaf area index (LAI) was measured with an opti- 
cally integrating lead area meter  on a three median-sized 
plant subsample. Then LAI values were obtained by 
taking the average of the three measurements.  

At the time of the MAC VI experiment,  LAI mea- 
surements were made in cotton and pecan fields. The 
corresponding LAI measurements  in the cotton were 
made with LAI-3000 leaf area meter.  Cotton leaves were 
collected within randomly selected areas of 31 cm x 41 
cm and were put through a portable leaf area meter  
(LAI-3000A) to obtain the LAI values (3.9 m 2 /m2). At 
the time of the experiment,  the cotton field was uniform 
and the cotton cover was about 80%. The LAI measure- 
ments in the pecan field were made at 17 locations 
selected at random. The measurements  were made with 
Li-Cor LAI-2000 canopy analyzer, which recorded in- 
coming and intercepted light by the canopy. Although 
the pecan field was generally uniform, missing trees 
were observed in the surroundings of some selected 
locations, resulting in a variation of LAI values from 
0.87 to 2.48 from location to location. The alfalfa field 
was recently harvested and the LAI values were  esti- 
mated to be near zero, although some litter could be 
seen at the time of measurement.  

During the mini-alfalfa experiment,  no correspond- 
ing LAI measurements  were made due to the size of 
the experiment  plots as well as due to the fact that BRF 
apparatus was kept at the same site for all days in order 
to monitor the alfalfa growth. 

RESULTS 

Leaf Area Index Estimation 

The estimated LAI values using the ASAS and the 
aircraft data from the MAC VI experiment  are depicted 
in Figure 4 for the three targets: harvested alfalfa, cot- 
ton, and pecan. The LAI values for the harvested alfalfa 
field were estimated to be  0.0 and the calculated LAI 
value was 0.1. For the pecan trees, the est imated LAI 
values were consistently lower than the measured val- 
ues. The variation in estimated LAI from DOY 250 to 
DOY 251 was less than 10% for the pecan site. Consid- 
ering the variations among the LAI measurements  of 

] [ ]  ASAS DOY250 • ASAS DOY251 ~ -I Mes. 
! [ ]  AIR DOY250 • AIR DOY25 ! 

4 . . . . . . . .  

i 

Alfalfa Pecan C o t t o n  

Figure 4. Estimated and measured LAI values for the three 
selected biome types using data acquired by ASAS and air- 
craft sensors from the MAC VI experiment. The vertical bar 
AB indicates the range (maximum and minimum) of LAI 
measurements in the pecan orchards. 

the pecan orchards as indicated by the line AB, the 
estimated LAI is a reasonable approximation of the 
actual LAI values. There  were also some differences in 
estimated LAI values between the two days, but the 
variation was less than 10% for the pecan site. 

The estimated LAI values for the cotton field on 
DOY 250 (3.9 m s / m  2 using ASAS data and 4.4 m 2 / m  2 
using aircraft data) were higher than the measured LAI 
(3.5 m2/m2), but lower on the next day (2.8 m2 /m 2 
using ASAS, and 3.8 m2 /m 2 using aircraft data), with 

10% errors. These errors were within the range of 
the measurement  uncertainties in determining LAI and, 
therefore, the estimated LAI values were considered to 
be good estimates. The differences in estimated LAI 
values of the cotton field between the two consecutive 
days were - 2 5 %  with the ASAS data and - 1 4 %  with 
the aircraft data. 

The model-to-model approach was further applied 
to the remote  sensing data from the wheat experiment,  
which consisted of nadir view angle measurements  ac- 
quired at different solar positions. Ten measurements  
during the peak growing season from DOY 90 to DOY 
100 were used to obtain leaf reflectance and transmit- 
tance, which were assumed to be constant throughout 
the whole growing season. The reflectance measure- 
ment  at the beginning of the season was used as the 
soil reflectance for the entire growing season. The re- 
suits were plotted in Figure 5 as a function of DOY. 
The circles are the estimated LAI while the solid line 
is the observed LAI. In the early growing season, the 
estimated and the measured LAI values matched very 
well until DOY 80. Between DOY 90 and 100 there 
was a divergence between the observed and the esti- 
mated LAI values. The variations found with the mea- 
surements seemed unrealistic since the LAI (vegetation 
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Figure 5. Temporal variation of the estimated and mea- 
sured LAI values of the wheat canopy using data from the 
wheat experiment as function of growing time (day of year). 

density) should be a steady function of time. The noise 
in the measurements could be due to the sampling 
schemes and the measurement errors. The model esti- 
mated LAI, however, appeared to be less noisy, espe- 
cially in the early and late parts of the growing seasons. 
The rapid increase in the estimated LAI from DOY 86 
to DOY 88 seemed to be unrealistic since LAI could 
not increase by 2 (m 2 / m 2) within such short time period 
(2 days). One possible explanation might be the sensitiv- 
ity of the approach to the spectral reflectances. Reflec- 
tance measurement errors may have been amplified by 
this approach (see sensitivity analysis section). 

In Figure 6, the estimated LAI was plotted against 
the measurements using all data from the MAC VI 
and wheat experiments. Statistically, there was little 
difference between the estimated and measured LAI 
values, with the correlation coefficient (R 2) of 0.90, 
indicating the capability of the model-to-model ap- 
proach by predicting LAI. The estimated LAI values 
with these data sets were within the range of LAI values 

Figure 6. Estimated LAI plotted against the measurements 
using all data acquired from the MAC VI and the wheat ex- 
periments for different vegetation types: (©) wheat, (A) har- 
vested alfalfa, (~') pecan, (B) cotton. 
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Figure 7. Demonstration of using muhitemporal remote 
sensing data for estimation of LAI with the simulated data 
from the mini-alfalfa experiment: a) sensor's view zenith 
angles; b) sensor's view azimuth angles; c) simulated tempo- 
ral red and NIR reflectances; d) estimated temporal LAI. 

from field measurements. Notice that the data from the 
wheat experiment consisted of only nadir view angle 
measurements, but at different solar zenith angles. The 
good agreement between estimated LAI with the field 
measurements using this data set suggests that if no 
simultaneous multidirectional measurements are avail- 
able, multitemporal data can be equivalently used in 
this approach. 

Applications with Muhitemporal Remote Sensing 
Data 
To demonstrate the potential use of this model-to-model 
approach in practice using multitemporal remote sens- 
ing data, the data collected during the mini-alfalfa exper- 
iment were used to simulate the observations by the 
AVHRR sensor, which can provide daily coverage over 
most areas of the globe. The multitemporal BRF data 
over the growing alfalfa canopy from the mini-alfalfa exper- 
iment were first interpolated to different view and then 
to different solar angles. From the interpolated data, a 
subset was selected by choosing those daily measure- 
ments that have the same geometric configurations as 
the AVHRR sensor. Figures 7a and 7b show the sensor's 
geometric configuration, while Figure 7c shows the 
simulated red and NIR reflectances for a total of four 
AVHRR generic revisit cycles (a total of 36 days). In 
the inversion processes, the mean leaf reflectance and 
transmittance obtained with DOY 278 data were used. 
The soil reflectance was measured on DOY 251 (before 
alfalfa emerged). The temporal LAI values estimated 
with the model-to-model approach are illustrated in 
Figure 7d. Though there were no ground LAI data 
available, the estimated LAI values appear reasonable 
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Table 1. Sensitivities of Leaf Reflectance, Transmittance, and Estimated LAI 
Values to Measurement Noise in Remote Sensing Measurements 

Noise in Blue Green Red NIR LAI 
Leaf Reflectance Data (%) (%) (%) (%) (%) 

Reflectance 30% 15 11 10 0.6 2-40 
Transmittance 30% 11 14 14 2 2-40 

for the alfalfa canopy. The variation found in the tempo- 
ral LAI estimates were most likely to due to the fact 
that the SAIL model does not taken into account the 
soil bidirectional properties. 

Sensitivity Analysis 

To investigate the sensitivity of the model-to-model 
approach to noise from the input radiometric measure- 
ments, randomly generated noise of up to 30% was 
added to the reflectance data collected over the growing 
alfalfa canopy on DOY 278 during the mini-alfalfa exper- 
iment when the canopy just reached its full cover. The 
noisy data (after adding up to 30% noise to the original 
data) were used to first estimate the leaf properties and 
then the LAI values. In Figure 8, the estimated leaf 
reflectance, transmittance, and absorptance were plot- 
ted as a function of the spectral wavelength, with the 
vertical bars being errors due to introduced noise in 
the reflectance data. It appeared that the leaf transmit- 
tance was more sensitive to the noise than the leaf 
reflectance. The uncertainties in leaf reflectance and 
transmittance due to the introduced noise in reflectance 
data are listed in Table 1. The introduced noise was 

Figure 8. Sensitivities of the estimated leaf reflectance, 
transmittance, and absorptance as a function of wavelength 
(nm) to the noise in spectral reflectance measurements. The 
vertical bars are the corresponding uncertainties using data 
from the mini-alfalfa experiment. 
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further examined in the LAI estimation using the multi- 
temporal alfalfa data set from the mini-alfalfa experi- 
ment  by running the model-to-model approach with 
leaf optical properties estimated with noisy data. The 
estimated LAI values were plotted in Figure 9, where 
the x-axis is the LAI values estimated with the mean 
reflectance and transmittance, while the y-axis is the 
LAI values estimated with noisy leaf reflectance and 
transmittance. The LAI estimation was clearly sensitive 
to the noise in leaf reflectance and transmittance, which 
in turn was a function of the noise levels in the reflec- 
tance measurements.  At low vegetation densities, where 
the soil substrate is the dominant radiance contributor, 
the LAI was less sensitive to noise effect than at high 
vegetation densities. The noise in LAI estimates can be 
up to 40% when the remote sensing measurements  
contain up to 30% uncertainty at LAI value o f -  6.0. 

CONCLUDING REMARKS 

Fairly good agreement  was found between model- 
estimated LAI and field measurements,  suggesting the 
validity of the model-to-model approach. Some differ- 
ences between the measured and estimated LAI values 
were found, due partially to the errors inherent in field 

Figure 9. Sensitivity of LAI estimation to the noise in the 
spectral reflectance measurements. The vertical bars are the 
uncertainties in LAI estimation using data from the mini- 
alfalfa experiment. 
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measurements and partially to the errors induced by 
the modeling approach. The random-sampling schemes 
for LAI measurements in both wheat and cotton data 
might be the major cause for variations in the measured 
LAI, while the uncertainty in reflectances measure- 
ments and some degree of inaccuracy in the BRDF 
models used may account for the variations in estimated 
LAI. The noise in reflectance measurements certainly 
influenced the prediction of the vegetation optical prop- 
erties and, therefore, LA1 estimation. When the noise 
is limited within 30% in the reflectance domain, the 
optical properties can vary up to 15%, which leads to 
an error of up to 40% in LAI estimation. The uncertainty 
in the LAI estimation, however, was shown to be depen- 
dent on the stage of the vegetation growth. The denser 
the canopy (larger LAI values), the larger is the uncer- 
tainty in LAI estimation. 

The model-to-model approach requires multiple si- 
multaneous multidirectional remote sensing measure- 
ments theoretically. Since satellite remote sensors nor- 
mally cannot provide simultaneous multidirectional 
measurements over the same pixel or target, there exists 
a limitation on extending this approach to an operational 
vegetation monitoring. It was shown, however, that 
multitemporal remote sensing data could be potentially 
used with this approach. Within the multitemporal mea- 
surement period, a time window (e.g., 1 week) may be 
located when the vegetation growth is not fast enough 
to change its spectral properties substantially. The multi- 
temporal data collected within this time window may, 
therefore, be treated as if they were collected at the 
same time but different geometric configurations. This 
was demonstrated to be promising with the wheat exper- 
iment data as well as with data from the mini-alfalfa 
experiment. Another alternative may be to use data 
acquired with multiple sensors, which is possible from 
a practical point of view (Moran et al., 1995). However, 
when using data collected with different sensors, differ- 
ences in spectral resolution, spatial scales, and radiomet- 
ric calibration should be taken into account. 

Although potentially this approach can be used in 
an operational mode to predict LAI with satellite remote 
sensing data such as those acquired with AVHRR or 
future MODIS, the atmospheric effect must be suffi- 
ciently corrected for, because the atmosphere cannot 
only introduce substantial noise, which will transform 
into uncertainties in estimation of vegetation optical 
properties and the LAI, but also change the bidirectional 
properties of the radiometric measurements. In either 
cases the atmospheric effects may result in errors in 
estimation of vegetation optical properties and the LAI. 
Consequently, to adapt this approach for operational 
uses, it may be necessary to incorporate an atmospheric 
model in this approach or perform atmospheric correc- 
tions before applications. 

The accuracy of predicting LAI with this approach 
would certainly be dependent on the accuracy of the 
BRDF models. Some models were developed for tall 
vegetation while others were for sparsely vegetated sur- 
faces (see Strahler, 1994; Cabot et al., 1994). Selection 
of different BRDF models would influence the results 
of this approach. Different BRDF models should be 
evaluated. Those models that require fewer input pa- 
rameters (therefore fewer bidirectional measurements 
required in inversion) but result in good accuracy are 
preferred and should be identified. The models used 
here were satisfactory in predicting LAI for wheat, 
cotton, pecan, and alfalfa. Application to other vegeta- 
tion parameter and types of vegetation needs further 
investigation. Finally, the spatial scaling effect should 
also be investigated because spatial scales not only in- 
fluence bidirectional reflectance properties but also the 
heterogeneity of land surfaces (Moran et al., 1994) and, 
therefore, affect the interpretation of the results. 
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